Trig Functions – All Best Math || Trigonometric Funtions 500+

Hello, friends, today we will learn about Trig Functions. And with this, we will study thoroughly about other topics of trigomometrics like Inverse Trigonometric Functions, Calculus (Differentiation & Integration), Subtituions, Definite Integral, Integration of Algebraic Functions etc.

Trigonometric Functions

Trig Functions
Trig Functions

So first we start with the basic formula for trigonometric functions.

Basic Trigonometric Functions

Sin2A=2SinACosA

Sin2A=\frac { 2TanA }{ 1+{ Tan }^{ 2 }A }

Cos2A=1-2{ Sin }^{ 2 }A

Cos2A=2{ Cos }^{ 2 }A-1

Cos2A={ Cos }^{ 2 }A-{ Sin }^{ 2 }A

Cos2A=\frac { 1-{ Tan }^{ 2 }A }{ 1+{ Tan }^{ 2 }A }

Tan2A=\frac { 2TanA }{ 1-{ Tan }^{ 2 }A}

Sin3A=3SinA-4{ Sin }^{ 3 }A

Cos3A=4{ Cos }^{ 3 }A-3CosA

Tan3A=\frac { 3TanA-{ Tan }^{ 3 }A }{ 1-3{ Tan }^{ 2 }A}

Sin(A+B)Sin(A-B)={ Sin }^{ 2 }A-{ Sin }^{ 2 }B

Sin(A+B)Sin(A-B)={ Cos }^{ 2 }B-Cos^{ 2 }A

Cos(A+B)Cos(A-B)={ Cos }^{ 2 }A-Sin^{ 2 }B

Cos(A+B)Cos(A-B)={ Cos }^{ 2 }B-Sin^{ 2 }A

SinA=2Sin\frac { A }{ 2 } Cos\frac { A }{ 2 }

SinA=\frac { 2Tan\frac { A }{ 2 } }{ 1+{ Tan }^{ 2 }\frac { A }{ 2 } }

CosA=1-2{ Sin }^{ 2 }\frac { A }{ 2 }

CosA=2{ Cos }^{ 2 }\frac { A }{ 2 } -1

CosA={ Cos }^{ 2 }\frac { A }{ 2 } -{ Sin }^{ 2 }\frac { A }{ 2 }

CosA=\frac { 1-{ Tan }^{ 2 }\frac { A }{ 2 } }{ 1+{ Tan }^{ 2 }\frac { A }{ 2 } }

TanA=\frac { 2{ Tan }\frac { A }{ 2 } }{ 1-{ Tan }^{ 2 }\frac { A }{ 2 } }


  • 1+Cos2A=2{ Cos }^{ 2 }A
  • 1-Cos2A=2{ Sin }^{ 2 }A
  • 1+CosA=2{ Cos }^{ 2 }\frac { A }{ 2 }
  • 1-CosA=2{ Sin }^{ 2 }\frac { A }{ 2 }

Most Useable Trigonometric Functions

Sin(A+B)=SinACosB+CosASinB

Sin(A-B)=SinACosB-CosASinB

Cos(A+B)=CosACosB-SinASinB

Cos(A-B)=CosACosB+SinASinB

Tan(A+B)=\frac { TanA+TanB }{ 1-TanATanB }

Tan(A-B)=\frac { TanA-TanB }{ 1+TanATanB }

Cot(A+B)=\frac { CotACotB-1 }{ CotB+CotA }

Cot(A-B)=\frac { CotACotB+1 }{ CotB-CotA }

2SinACosB=Sin(A+B)+Sin(A-B)

2CosASinB=Sin(A+B)-Sin(A-B)

2CosACosB=Cos(A+B)+Cos(A-B)

-2SinASinB=Cos(A+B)-Cos(A-B)

SinC+SinD=2Sin\frac { C+D }{ 2 } Cos\frac { C-D }{ 2 }

SinC-SinD=2Cos\frac { C+D }{ 2 } Sin\frac { C-D }{ 2 }

CosC+CosD=2Cos\frac { C+D }{ 2 } Cos\frac { C-D }{ 2 }

CosC-CosD=-2Sin\frac { C+D }{ 2 } Sin\frac { C-D }{ 2 }

Inverse Trigonometric Functions

Definition :- If Sinθ = x then θ = Sin-1x


Sin^{ -1 }(Sin\theta )\quad =\quad \theta

Cos^{ -1 }(Cos\theta )\quad =\quad \theta

Tan^{ -1 }(Tan\theta )\quad =\quad \theta

Cot^{ -1 }(Cot\theta )\quad =\quad \theta

Sec^{ -1 }(Sec\theta )\quad =\quad \theta

Cosec^{ -1 }(Cosec\theta )\quad =\quad \theta


Sin(Sin^{ -1 }x)\quad =\quad x

Cos(Cos^{ -1 }x)\quad =\quad x

Tan(Tan^{ -1 }x)\quad =\quad x

Cot(Cot^{ -1 }x)\quad =\quad x

Sec(Sec^{ -1 }x)\quad =\quad x

Cosec(Cosec^{ -1 }x)\quad =\quad x


Sin\left( \frac { \pi }{ 2 } -\theta \right) \quad =\quad Cos\theta

Tan\left( \frac { \pi }{ 2 } -\theta \right) \quad =\quad Cot\theta

Sec\left( \frac { \pi }{ 2 } -\theta \right) \quad =\quad Cosec\theta


Sin^{ -1 }x+Cos^{ -1 }x=\frac { \pi }{ 2 }

Tan^{ -1 }x+Cot^{ -1 }x=\frac { \pi }{ 2 }

Sec^{ -1 }x+Cosec^{ -1 }x=\frac { \pi }{ 2 }


Note :-

  1. Sin^{ -1 }x\quad \neq \quad \frac { 1 }{ Sinx }
  2. (Sinx)^{ -1 }\quad =\quad \frac { 1 }{ Sinx }
  3. Sinx^{ -1 }\quad =\quad Sin\frac { 1 }{ x }

Sin\theta \quad =\quad \frac { 1 }{ Cosec\theta }

Cos\theta \quad =\quad \frac { 1 }{ Sec\theta }

Tan\theta \quad =\quad \frac { 1 }{ Cot\theta }

Cot\theta \quad =\quad \frac { 1 }{ Tan\theta }

Sec\theta \quad =\quad \frac { 1 }{ Cos\theta }

Cosec\theta \quad =\quad \frac { 1 }{ Sin\theta }


{ Sin }^{ -1 }x\quad =\quad { Cosec }^{ -1 }\frac { 1 }{ x }

{ Cos }^{ -1 }x\quad =\quad { Sec }^{ -1 }\frac { 1 }{ x }

{ Tan }^{ -1 }x\quad =\quad { Cot }^{ -1 }\frac { 1 }{ x }

{ Cot }^{ -1 }x\quad =\quad Tan^{ -1 }\frac { 1 }{ x }

{ Sec }^{ -1 }x\quad =\quad Cos^{ -1 }\frac { 1 }{ x }

{ Cosec }^{ -1 }x\quad =\quad Sin^{ -1 }\frac { 1 }{ x }


{ Sin }(-\theta )\quad =\quad -Sin\theta

{ Cos }(-\theta )\quad =\quad Cos\theta

{ Tan }(-\theta )\quad =\quad -Tan\theta

{ Cot }(-\theta )\quad =\quad -Cot\theta

{ Sec }(-\theta )\quad =\quad Sec\theta

{ Cosec }(-\theta )\quad =\quad -Cosec\theta


{ Sin }^{ -1 }(-x)\quad =\quad { Sin }^{ -1 }x

{ Cos }^{ -1 }(-x)\quad =\quad { \pi -Cos }^{ -1 }x

Tan^{ -1 }(-x)\quad =\quad { -Tan }^{ -1 }x

Cot^{ -1 }(-x)\quad =\quad { \pi -Cot }^{ -1 }x

Sec^{ -1 }(-x)\quad =\quad { \pi -Sec }^{ -1 }x

Cosec^{ -1 }(-x)\quad =\quad { -Cosec }^{ -1 }x


Inverse Function Domain Range
Sin-1x [-1,1] \left[ -\frac { \pi }{ 2 } ,\frac { \pi }{ 2 } \right]
Cos-1x [-1,1] \left[ 0,\pi \right]
Tan-1x R \left( -\frac { \pi }{ 2 } ,\frac { \pi }{ 2 } \right)
Cot-1x R \left( \pi ,0 \right)
Sec-1x R-(-1,1) \left[ 0,\pi \right] -\left\{ \frac { \pi }{ 2 } \right\}
Cosec-1x R-(-1,1) \left[ -\frac { \pi }{ 2 } ,\frac { \pi }{ 2 } \right] -\left\{ 0 \right\}

1. Sin(A+B)=SinACosB+CosASinB { Sin }^{ -1 }x+{ Sin }^{ -1 }y={ Sin }^{ -1 }\left[ x\sqrt { 1-{ y }^{ 2 } } +y\sqrt { 1-{ x }^{ 2 } } \right]
2. Sin(A-B)=SinACosB-CosASinB { Sin }^{ -1 }x+{ -Sin }^{ -1 }y={ Sin }^{ -1 }\left[ x\sqrt { 1-{ y }^{ 2 } } -y\sqrt { 1-{ x }^{ 2 } } \right]
3. Sin2A=2SinACosA 2Sin^{ -1 }x=Sin^{ -1 }\left[ 2x\sqrt { 1-{ x }^{ 2 } } \right]
4. Sin3A=3SinA-4{ Sin }^{ 3 }A 3Sin^{ -1 }x=Sin^{ -1 }\left[ 3x-4x^{ 3 } \right]
5. Cos(A+B)=CosACosB-SinASinB Cos^{ -1 }x+{ Cos }^{ -1 }y= { Cos }^{ -1 }\left[ xy-\sqrt { 1-{ x }^{ 2 } } \sqrt { 1-{ y }^{ 2 } } \right]
6. Cos(A-B)=CosACosB+SinASinB Cos^{ -1 }x-{ Cos }^{ -1 }y={ Cos }^{ -1 }\left[ xy+\sqrt { 1-{ x }^{ 2 } } \sqrt { 1-{ y }^{ 2 } } \right]
7. Cos2A=2Cos^{ 2 }A-1 2{ Cos }^{ -1 }x={ Cos }^{ -1 }\left[ 2{ x }^{ 2 }-1 \right]
8. Cos3A=4Cos^{ 3 }A-3CosA 3{ Cos }^{ -1 }x={ Cos }^{ -1 }\left[ 4{ x }^{ 3 }-3x \right]
9. Tan(A+B)=\frac { TanA+TanB }{ 1-TanATanB } Tan^{ -1 }x+Tan^{ -1 }y=Tan^{ -1 }\left[ \frac { x+y }{ 1-xy } \right] \quad
10. Tan(A-B) = \frac { TanA-TanB }{ 1+TanATanB } Tan^{ -1 }x-Tan^{ -1 }y=Tan^{ -1 }\quad
11. Tan2A = \frac { 2TanA }{ 1-Tan^{ 2 }A }

2Tan^{ -1 }x=Sin^{ -1 }\left( \frac { 2x }{ 1+{ x }^{ 2 } } \right)

2Tan^{ -1 }x=Cos^{ -1 }\left( \frac { 1-{ x }^{ 2 } }{ 1+{ x }^{ 2 } } \right)

2Tan^{ -1 }x=Tan^{ -1 }\left( \frac { 2{ x } }{ 1-{ x }^{ 2 } } \right)

12. Tan3A= \frac { 3TanA-Tan^{ 3 }A }{ 1-3Tan^{ 2 }A } 3{ Tan }^{ -1 }x={ Tan }^{ -1 }\left( \frac { 3x-{ x }^{ 3 } }{ 1-3{ x }^{ 2 } } \right)
13. { Tan }^{ -1 }x+{ Tan }^{ -1 }y+{ Tan }^{ -1 }z = Tan^{ -1 }\left( \frac { x+y+z-xyz }{ 1-xy-yz-zx } \right) { Cot }^{ -1 }x+{ Cot }^{ -1 }y=Cot^{ -1 }\left( \frac { xy-1 }{ y+x } \right)
14. Cot(A-B)=\frac { CotACotB+1 }{ CotB-CotA } { Cot }^{ -1 }x-{ Cot }^{ -1 }y=Cot^{ -1 }\left( \frac { xy+1 }{ y-x } \right)
15. Tan(A+B+C) =\frac { TanA+TanB+TanC-TanATanBTanC }{ 1-TanATanB-TanBTanC-TanCTanA } { Tan }^{ -1 }x+{ Tan }^{ -1 }y+{ Tan }^{ -1 }z={ Tan }^{ -1 }\left( \frac { x+y+z-xyz }{ 1-xy-yz-zx } \right)

Calculus (Differentiation & Integration)


No. Differentiation Intergration
1. \frac { d }{ dx } { x }^{ n }=n{ x }^{ n-1 },\quad n\neq 0 \int { { x }^{ n }dx=\frac { { x }^{ n+1 } }{ n+1 } +c,\quad n\neq -1 }
2. \frac { d }{ dx } { x }=1 \int { 1dx=x+c }
3.

\frac { d }{ dx } { (c) }=0,

Where “c” is Constant

\int { 0dx=c }

Wher “c” is Constant

4. \frac { d }{ dx } { \sqrt { x } }=\frac { 1 }{ 2\sqrt { x } } \int { \frac { 1 }{ \sqrt { x } } dx=2\sqrt { x } } +c
5. \frac { d }{ dx } { \frac { 1 }{ x } }=-\frac { 1 }{ { x }^{ 2 } } \int { \frac { 1 }{ { x }^{ 2 } } dx=\frac { -1 }{ x } } +c
6. \frac { d }{ dx } { \log _{ e }{ x } }=\frac { 1 }{ { x } } ,\quad x\neq 0 \int { \frac { 1 }{ x } dx=\log _{ e }{ \left| x \right| } } +c,\quad x\neq 0
7. \frac { d }{ dx } \left( { e }^{ x } \right) ={ e }^{ x } \int { { e }^{ x }dx={ e }^{ x } } +c
8. \frac { d }{ dx } { a }^{ x }={ a }^{ x }\log _{ e }{ a } \int { a^{ x }dx=\frac { { a }^{ x } }{ \log _{ e }{ a } } } +c
9.

\frac { d }{ dx } (Sinx)=Cosx

Where “x” is in Radians.

\int { a^{ x }dx=\frac { { a }^{ x } }{ \log _{ e }{ a } } } +c

Where “x” is in Radians.

10. \frac { d }{ dx } (Cosx)=-Sinx \int { Sinx\quad dx=-Cosx } +c
11. \frac { d }{ dx } (Tanx)=Sec^{ 2 }x \int { { Sec }^{ 2 }x\quad dx=Tanx } +c
12. \frac { d }{ dx } (Cotx)=-Cosec^{ 2 }x \int { { Cosec }^{ 2 }x\quad dx=-Cotx } +c
13. \frac { d }{ dx } (Secx)=SecxTanx \int { Secx\quad Tanx\quad dx=Secx } +c
14. \frac { d }{ dx } (Cosecx)=-CosecxCotx \int { Cosecx\quad Cotx\quad dx=-Cosecx } +c
15.

\frac { d }{ dx } \left( Sinh\quad x \right) =Cosh\quad x

Where “h” is Hyperbolic Funtion

Means That : All Graphs of Hyperbolic Functions are Positive.

\int { Cosh\quad xdx=sinh\quad x+c }
16. \frac { d }{ dx } \left( Cosh\quad x \right) =Sinh\quad x \int { Sinh\quad xdx=Cosh\quad x+c }
17. \frac { d }{ dx } \left( Tanh\quad x \right) =Sech^{ 2 }\quad x \int { Sech^{ 2 }\quad xdx=Tanh\quad x+c }
18. \frac { d }{ dx } \left( Coth\quad x \right) =-Cosech^{ 2 }\quad x \int { Cosech^{ 2 }\quad xdx=-Coth\quad x+c }
19. \frac { d }{ dx } \left( Sech\quad x \right) =-Sech\quad x\quad Tanh\quad x \int { Sech\quad x\quad Tanh\quad x\quad dx=-Sech\quad x+c }
20. \frac { d }{ dx } \left( Cosech\quad x \right) =-Cosech\quad x\quad Coth\quad x \int { Cosech\quad x\quad Coth\quad x\quad dx=-Cosech\quad x+c }
21. \frac { d }{ dx } \left( { Sin }^{ -1 }x \right) =\frac { 1 }{ \sqrt { 1-{ x }^{ 2 } } } \int { \frac { 1 }{ \sqrt { 1-{ x }^{ 2 } } } } dx=Sin^{ -1 }x+c,\quad -1\le x\le 1
22. \frac { d }{ dx } \left( { Cos }^{ -1 }x \right) =\frac { -1 }{ \sqrt { 1-{ x }^{ 2 } } } \int { \frac { 1 }{ \sqrt { 1-{ x }^{ 2 } } } } dx=-Cos^{ -1 }x+c,\quad -1\le x\le 1
23. \frac { d }{ dx } \left( { Tan }^{ -1 }x \right) =\frac { 1 }{ 1{ +x }^{ 2 } } \int { \frac { 1 }{ 1+{ x }^{ 2 } } } dx=Tan^{ -1 }x+c
24. \frac { d }{ dx } \left( { Cot }^{ -1 }x \right) =\frac { -1 }{ 1{ +x }^{ 2 } } \int { \frac { 1 }{ 1+{ x }^{ 2 } } } dx=-Cot^{ -1 }x+c
25. \frac { d }{ dx } \left( { Sec }^{ -1 }x \right) =\frac { 1 }{ x\sqrt { { x }^{ 2 }-1 } } \int { \frac { 1 }{ x\sqrt { { x }^{ 2 }-1 } } } dx=Sec^{ -1 }x+c
26. \frac { d }{ dx } \left( Cosec^{ -1 }x \right) =\frac { -1 }{ x\sqrt { { x }^{ 2 }-1 } } \int { \frac { 1 }{ x\sqrt { { x }^{ 2 }-1 } } } dx=-Cosec^{ -1 }x+c
27. \frac { d }{ dx } \left| x \right| =\frac { \left| x \right| }{ x } ,\quad (x\neq 0) \int { \frac { \left| x \right| }{ x } } dx=\left| x \right| +c,\quad (x\neq 0)

 


Go Back to Home

Trig Functions, trigonometric functions, trigonometry table, trigonometry formulas, trigonometry formula, trigonometric formulas, trigonometry formulas list, trigonometric functions, trigonometric formula

Leave a Comment